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The transition from linear to nonlinear dynamical elasticity in rocks is of considerable interest in
seismic wave propagation as well as in understanding the basic dynamical processes in consolidated
granular materials. We have carried out a careful experimental investigation of this transition for Berea
and Fontainebleau sandstones. Below a well-characterized strain, the materials behave linearly,
transitioning beyond that point to a nonlinear behavior which can be accurately captured by a simple
macroscopic dynamical model. At even higher strains, effects due to a driven nonequilibrium state, and
relaxation from it, complicate the characterization of the nonlinear behavior.
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Rocks possess a variety of remarkable nonlinear elastic
properties including hysteresis with end-point memory
[1], variation of attenuation and sound velocity with strain
[2], strong dependence of elastic and loss constants on
pressure, humidity, and pore fluids [3], long-time relaxa-
tion phenomena (“‘slow dynamics”) [4], and nontrivial
variation of resonance frequency with strain [5,6].
Significantly, materials as diverse as sintered ceramics
and damaged steels are now known to display similar
effects [6]. Thus rocks may be viewed as representative
members of a class of fascinating, but poorly understood,
nonlinear elastic materials: Fundamental questions still
to be resolved relate not only to the underlying causes of
the nonlinear phenomena but also to the conditions under
which they occur.

In this Letter, we focus on delineating two strain
thresholds, one below which the rocks behave effectively
as linear elastic materials, €;, the other beyond which
memory and conditioning effects occur, €, and the
dynamic elastic behavior straddling the region of these
thresholds [7]. While in Ref. [2] it was argued that €; ~
107° (albeit with some uncertainty), more recent data
[5,6,8] have been used to support an extension of the
nonlinear region to substantially lower strains; doubt
has been cast even on the very existence of a threshold
[9]. In addition, results from resonant bar experiments
[5,8] have been interpreted to exhibit a ‘“‘nonclassical”
frequency and loss dependence on the drive amplitude,
ie., frequency and Q softening linearly with drive am-
plitude rather than quadratically as predicted by Landau
theory [10], even at strains as small as ~1073. (The
importance of €), in interpreting resonant bar data is
emphasized below.)

We have carried out a new set of well-characterized
experiments, over a wide dynamic range, to unambigu-
ously settle these questions: While longitudinal resonant
excitation of bars is a classic measurement technique [11],
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rock samples require substantial care in terms of control-
ling the temperature and humidity and characterizing
possible systematic effects, especially those due to con-
ditioning of the sample by the external drive [4].

Our major conclusions are as follows. For Berea and
Fontainebleau sandstone samples, below a threshold
strain €, ~ 10781077 (lower end for Fontainebleau;
upper end for Berea), there was no discernible depen-
dence of the resonance frequency on the strain — the
materials behaved linearly to better than one part in
10*. For € > €, the materials displayed a reversible soft-
ening of the resonance frequency with strain, in excellent
qualitative agreement with the quadratic prediction of
classical nonlinear theory [10] up to a point where mem-
ory and conditioning effects became apparent (e ~ €,,).
In detailing and characterizing the onset and nature of
the nonlinearity, our results very substantially improve
on previous work [2]. We show below that, up to the
conditioning threshold, the dynamical behavior is accu-
rately captured by a phenomenological macroscopic
model incorporating a (softening) Duffing nonlinearity
and linear losses. Beyond the conditioning threshold, the
simultaneous presence of nonlinearity and nonequilib-
rium dynamics complicates the characterization of dy-
namical behavior; in the absence of a separation of these
effects, the data cannot be interpreted to support the
existence of nonclassical behavior.

Our computer-controlled resonant bar experiment uses
cylindrical sandstone samples, 2.5 cm in diameter and
35 cm in length. The cylinders are driven sinusoidally at
one end by a piezoelectric transducer with a brass back-
load. The acceleration is measured by a Bruel & Kjaer
accelerometer at the other end of the bar and converted to
an effective average strain using the (known) driving
frequency, f, via € = ii/(4aLf?), where u is the displace-
ment and L is the bar length. The finite accelerometer
signal to noise restricts the useful strain sensitivity to
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~10719-107° while the upper end of strain is limited
primarily by the physical integrity of the experimental
setup to ~107>. Scans of the resonance peak are con-
ducted at constant drive amplitude over an up/down
frequency sweep with spot measurements at frequencies
f; bracketing the bar’s resonance frequency (Fig. 1).
While in previous experiments [8] the temperature was
actively controlled, the present experiments were carried
out using passive thermal isolation to avoid even low-
level thermal shocks.

The thermal history of a rock sample is known — due
to slow buildup and relaxation of internal stresses — to
influence the effective elastic modulus and, hence, the
resonance frequency of the bar. The time scales associ-
ated with this behavior can be quite long, of the order of
several hours; hence long-term temperature stability is a
basic necessity for resonant bar experiments, especially at
small strain levels. With the present isolation system,
long-term frequency stability of the samples has been
verified at ~0.1 Hz (corresponding to a long-term ther-
mal stability of ~10 mK), which is close to how well the
peak of the frequency response curve can be determined
at the lowest levels of strain reported in this Letter.

The basic quantity measured in these experiments is
the resonance frequency, f, = wo/2, of the bar as a
function of the strain, €, defined by the peak of the
resonance curve as measured above. The statistical analy-
sis used a nonparametric Gaussian process to model data
trends. Bayesian estimation and characterization of un-
certainty was carried out using Markov chain Monte
Carlo calculations [12].

Traditionally, the loss, as represented by the Q of the
bar has also been reported. However, this quantity is not
easy to define or measure precisely [the present bars have
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FIG. 1. The average strain amplitude € as a function of drive

frequency for Fontainebleau sandstone. The reference center
frequency is 1155.98 Hz. The open circles are the experimental
data; the filled circles mark the peak positions. The solid lines
are theoretical predictions from Eq. (2).
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QO =66 (Berea) and Q =~ 132 (Fontainebleau)] even at
high values of Q [13]. We find experimentally that the
full-width of the response curves, I (measured at ay/~/2,
where ay is the peak amplitude; Q = w,/I") at all drive
levels below the conditioning threshold, is essentially
invariant (this behavior is also predicted by the macro-
scopic model described below). At higher drives, as con-
ditioning and memory effects appear, the response curves
are not symmetric around the peak and the width be-
comes strongly dependent on the drive amplitude. This
behavior will be detailed elsewhere [14].

The determination of f, as a function of strain is
complicated by the fact that external driving can condi-
tion the sample and also lead to shifts in the frequency via
slow dynamics [4]. In order to eliminate this possibility
we implemented a ‘“‘zigzag’ strategy of systematically
increasing the drive level through the up/down frequency
sweeps and then dropping back to the original drive
amplitude to verify that f, at the lowest strain value
had not changed. Application of this method shows that
there are no conditioning effects for € < €y, =5 X 1077
for Berea and € < €); =~ 2 X 1077 for Fontainebleau. Up
to these strain levels, any variation in f;, as a function of
drive amplitude is taken to define the intrinsic nonline-
arity of the sample.
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FIG. 2. The resonant frequency shift Af as a function of the
effective strain € for Fontainebleau and Berea samples for € <
€)- The solid lines represent predictions of the theoretical
model [Eq. (3)]. Parameters for the Fontainebleau sample
are ) =7262.8rad/s, u=275s"! and y=-7.6X
10" m~2572, and for the Berea sample, ) = 17375.7 rad/s,
uw=131.6s"!, and y = =53 X 10 m~2s72.
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The measured variation of f is shown in Fig. 2 (Af is
the difference between the measured value and the start-
ing, lowest drive level, value of f;). Results from a known
linear material, acrylic, were used as a control to establish
the flatness of the measurement scheme out to strain
levels of 7 X 1079, Asis clearly apparent, within the error
bars of the experiment, the materials are effectively elas-
tically linear (no softening of f, with drive) till € ~
1078-10"". Beyond this point, f, softens quadratically
with increasing drive amplitude until € = €;,. We have
compared our new results with archival data from pre-
vious experiments on Berea reported in Ref. [8]; allowing
for differences in the starting values of f, we find that the
two data sets are in excellent agreement in obtaining
quadratic behavior. Since the samples were subjected to
very different environmental conditions in the two cases
(mTorr vacuum in the older experiments versus N, atmo-
sphere in the present), resulting in quite different Q values
(higher by a factor of 5 in the older data set), this is a very
encouraging result. The erroneous conclusion of nonclass-
ical nonlinearity (linear dependence of f(, on €) reached
in the earlier work was due to the limited dynamic range
in strain of the analyzed data (<1 decade) versus the
present measurements (3 decades): The present experi-
ments yield a zero value for the coefficient of a linear fit
to the softening with strain; we find the same result for
the archival data, in disagreement with the conclusions of
Ref. [8].

We now describe a simple phenomenological dynami-
cal model for driven rods that provides an excellent
description of the measured data. The model is not di-
rectly extracted from a one-dimensional (nonlinear) wave
equation [15]. Rather, the procedure follows statistical
mechanics-based modeling of degrees of freedom
coupled to dissipative channels [16,17]. The model adds
a quartic (Duffing) softening nonlinearity to a harmonic
potential (a more complex model for the higher strain
regime is described in Ref. [17]). The equation of motion
for the displacement is taken to be

i +2ui + Q%u + yu? = Fsin(w?), (1

where y < 0. Since the displacement, u, is small, multi-
scale perturbation theory can be used to solve Eq. (1) very
accurately [18]. For the case relevant to the experiment
(w ~ ), the solution is u = a cos(wt + ¢). The phase ¢
is of no interest here, while the relation between the
amplitude of the oscillation, @, and the drive amplitude,
F, is given by

O2ula® + a*(oQ — da*y)* = JF7, ()
where w = ) + . It is straightforward to show that the
peak of the response curve has the value, ay = F/(2u{}),

and occurs at the drive angular frequency wy, =  + oy,
with

065501-3

3F%y

=—". 3
32,203 )

4]

Thus, the model predicts a quadratic softening of the
frequency with the drive amplitude F. In addition, by
solving Eq. (2) for ¢ and then substituting a = ay/~/2, it
is easy to show that the width of any response curve is an
invariant, I' = 2u.

With these results in hand, it is straightforward to
determine model parameters. As the model predicts, we
have verified that I' as measured from the experimental
curves is constant within 1% up to the strain €, this
immediately determining the damping coefficient w. The
(linear) resonant frequency () and the nonlinearity pa-
rameter y now follow by fitting the experimental data for
Af as a function of the drive using Eq. (3) (Fig. 2). As is
apparent from Fig. 1, with these parameters fixed as just
described, the model predictions are in excellent agree-
ment with the experimental response curves.

It has been previously claimed that the absence of
frequency softening is not sufficient to rule out nonline-
arity in rocks as harmonic generation may exist even in
the absence of a discernible frequency shift [5]: At least in
the materials studied here, this does not occur. Our theo-
retical model assumes that the fundamental mode domi-
nates the response of the bar to external driving and no
higher modes of the bar are excited via mode coupling.
With the parameters fixed as above, harmonic generation
via the intrinsic nonlinearity of the model is finite, but
very weak, with all even harmonics suppressed, and with
odd harmonics typically 80 dB (Berea parameters) below
the fundamental—Ilower than the noise floor of the ex-
periment, and, consistent with this prediction, we did not
observe any harmonic content in the signal at the corre-
sponding strain levels (€ < €y).

We now turn to the behavior of f, as € is increased
beyond €,,, the point where conditioning begins to play a
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Avoiding relaxation effects: the left curve is for Berea

maintained in a nonequilibrium steady state by continuous
driving, while the right curve allows for a long relaxation to
take place between the individual data points.
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role. Here the frequency softening is such that f; no
longer returns to the starting point when the drive is
removed, but to a lower value. It is clear that in this
regime the measured softening at a given strain cannot
be interpreted as wholly due to an intrinsic nonlinearity;
it will as well depend on the sweep rate [4]. Analyzing a
fo vs € curve without taking this effect into account
would introduce an unknown systematic effect exagger-
ating the actual nonlinearity. Fortunately, experimental
protocols can be implemented to alleviate this difficulty
as described in detail in Ref. [14]. To illustrate these
issues, Fig. 3 shows response curves for Berea sandstone
under two different conditions. The left curve represents
an experiment where, at each frequency, the sample is
allowed to come to a new steady state (10 minutes at each
frequency), while the right curve allows for 10 minutes
between rapidly taken individual measurements to allow
a return to thermal equilibrium between measurements.
In both cases, the measurement protocols are designed to
reduce relaxation effects as much as possible, in one case
by staying at all times in a nonequilibrium steady state,
and in the other, by allowing a close-to-equilibrium re-
turn between measurements. The key point is that at
strain levels € > €, the rock transitions to a nonequilib-
rium state characterized by a different set of macroscopic
parameters, as evidenced by the 5 Hz shift between the
left and right curves: The existence of these two different
states implies the existence of dynamic hysteresis. If
measurements could be made rapidly enough so that
each point on the right curve corresponds to an equilib-
rium state, then it is precisely these response curves that
would be equivalent to data taken at € < €. In practice,
however, this procedure is very difficult to carry out as it
requires stringent long-term environmental stability.
Thus, all measurements to date in this higher strain
regime are dangerously contaminated by conditioning;
the separate effects of nonlinearity and relaxation in
these experiments cannot be disentangled.

To summarize, our experiments have established the
existence of a reversible dynamic quadratic nonlinearity
in the Berea and Fontainebleau sandstones up to a mate-
rial-dependent strain threshold, €,,. Below this threshold
we find no evidence for nonclassical behavior as reported
previously [5,8]. Frequency shifts in dynamical experi-
ments with € > €;; do not have a simple interpretation
due to the existence of a driven nonequilibrium state with
differing macroscopic parameters; because of the com-
petition of material nonlinearity and conditioning and
relaxation effects, present experimental data cannot dis-
tinguish classical from nonclassical effects in this regime.
Experiments to do so are in progress.
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